
Package ‘dataone’
February 24, 2013

Version 1.0.0

Date 2013-02-14

Title DataONE R Client

Author Matthew Jones, Rob Nahf

Maintainer Matthew Jones <jones@nceas.ucsb.edu>

Description A package that provides read/write access to data and metadata from
the DataONE network of Member Node data repositories.

Depends R (>= 2.9.2), rJava (>= 0.8-5), XML (>= 3.95-0.1), methods,dataonelibs

Imports rJava, XML

SystemRequirements Java (>= 1.6)

License Apache License 2.0

Repository CRAN

Date/Publication 2013-02-14 20:49:45

URL http://releases.dataone.org/online/dataone_r

BugReports https://redmine.dataone.org/projects/dataone_r

R topics documented:
dataone-package . 2
AbstractTableDescriber-class . 6
CertificateManager-class . 7
CertificateManager-methods . 8
D1Client-class . 9
D1Client-methods . 11
D1Object-class . 11
DataPackage-class . 13
EMLParser-class . 14
tableDescriber.registry . 15

Index 16

1

http://releases.dataone.org/online/dataone_r

2 dataone-package

dataone-package DataONE R Client

Description

A package that provides read/write access to data and metadata from the DataONE network of
Member Node data repositories.

Details

Package: dataone
Version: 1.0.0
Date: 2013-02-14
Depends: R (>= 2.9.2), rJava (>= 0.8-5), XML (>= 3.95-0.1), methods
Imports: rJava, XML
SystemRequirements: Java (>= 1.6)
License: file LICENSE
Packaged: 2013-02-14 20:54:27 UTC; jones
Repository: CRAN
Date/Publication: 2013-02-14 20:49:45
URL: http://www.dataone.org/investigator-toolkit/dataone_r
BugReports: https://redmine.dataone.org
Built: R 2.15.1; ; 2013-02-15 21:42:52 UTC; unix

Index:

AbstractTableDescriber-class
Class ’"AbstractTableDescriber"’

CertificateManager-class
Class ’"CertificateManager"’

D1Client-class Class ’"D1Client"’
D1Object-class Class ’"D1Object"’
DataPackage-class Class ’"DataPackage"’
EMLParser-class Class ’"EMLParser"’
dataone-package Package to access data and metadata in the

DataONE repository federation.

Getting Started

The R Client addresses 5 broad functional areas: client setup, search, data retrieval, data submission,
and dataFrame interoperability.

The dataone package uses S4 classes and methods, so finding help for each of the dataone classes
can be accomplished with the command:

> class ? <theClass>

for example:

> class ? D1Client

dataone-package 3

1. Client Setup: Client setup includes setting your member node (where submissions will go),
and setting up your client subject. (You are identified to DataONE by your client subject). Most
interaction with the DataONE system is mediated by the D1Client class - retrievals, searches, sub-
missions. The D1Client ’constructor’ method builds a D1Client object configured to the chosen
environment and membernode.
some examples:

> cli <- D1Client() # builds a client to the production environment

> cli <- D1Client(,"urn:node:WERSDF") # builds a client to the
production environment and sets
the default member node

> cli <- D1Client("DEV", "urn:node:UIYOP") # sets the environment to DEV,
and sets the default member node

There are also some helper functions for managing your client subject.

> cm <- CertificateManager()
> downloadCert(cm) # opens the CILogon page in your default browser,

to assist in getting your client certificate
downloaded

> getCertExpires(cm) # displays the date-time that your current
certificate is valid until.

For documentation on all of the CertificateManager helper functions, type:

> class ? CertificateManager

2. Data Search: DataONE coordinating nodes expose a SOLR query endpoint that can be
queried against to get information about stored objects. Those familiar with SOLR queries can
use the D1Client methods d1SolrQuery

> results <- d1SolrQuery(cli, list(q="foo",fl="identifier,etc..."))

to return solr results for their own interpretation.
For more streamlined searches to get just the identifiers:

> d1IdentifierSearch(cli, "q=foo")

returns a character vector of the identifiers of records found using the word ’foo’ as a search term.
Future development based on initial feedback on these search methods is planned.

3. Data Retrieval: Data retrieval from DataONE is accomplished using an object Identifier,
obtained either from a data search within R, from ONEMercury, or even in a published paper.
Ideally, the data you want to retrieve has been submitted as part of a package, and you will be
retrieving the entire package.
A package in DataONE terminology is a set of individual objects (files, usually) that relate to each
other, and whose relationships to each other are defined in a separate object called a Resource
Map. To retrieve a data package, use the following:

> cli <- D1Client()
> packageOfInterest <- getPackage(cli,"interestingStuff")

the object ’packageOfInterest’ is of type "DataPackage", and once you have it, you can start
looking at the individual objects that make it up:

4 dataone-package

> members <- getIdentifiers(packageOfInterest)
> member1 <- getMember(packageOfInterest,members[1])
> member1[0]
"D1Object"

At this point, you will notice that the individual objects are represented locally with the objects of
class "D1Object". What’s in it?

> getData(member1) # returns the content of member1

At times you may wish to retrieve an individual object directly, without retrieving the entire pack-
age. Use the following method, getD1Object.

> cli <- D1Client()
> item <- getD1Object(cli,"interestingObject")

A list of methods used for working with DataPackages and their member D1Objects can be found
with:

> methods ? DataPackage
> methods ? D1Object

4. Submitting Data:
Data submission functionality is still in development. We have released a basic set of functions
for the three major related activities: assembling the package, attending to who will have access to
it, and submitting to DataONE. However, the functionality for the second two activities is limited
to setting public access to objects, and creating new data. Future releases will support content
updates, archiving, and fine tuning access policies.
The best practice is to submit new data as part of a package containing the data, the metadata
that describes it, and the ORE resource map that defines the relationship between the two (or
more). Typically, the scope of a package is 1 metadata object along with 1 or more data objects
it documents. DataONE does support packages with multiple metadata objects and their data as
well.
The DataPackage class provides methods for assembling the data and metadata objects and defin-
ing the "documents / documented-by" relationships that get fed into the resource map. All that is
needed do is adding the members of the data package, and telling it which (metadata) members
document which (data) members. After that, you submit the dataPackage. For example:

env.label <- "STAGING"
mn.nodeid <- "urn:node:foo"
d1.client <- D1Client(env.label, mn.nodeid)

d1o.d1 <- new("D1Object", id.d1, table.1.data, data.formatID, mn.nodeid)
d1o.d2 <- new("D1Object", id.d2, table.2.data, data.formatID, mn.nodeid)
d1o.d3 <- new("D1Object", id.d3, table.3.data, data.formatID, mn.nodeid)
d1o.md1 <- new("D1Object", id.md1, metadata, md.formatID, mn.nodeid)

let’s make these publicly readable
setPublicAccess(d1o.d1)
setPublicAccess(d1o.d2)
setPublicAccess(d1o.d3)
setPublicAccess(d1o.md1)

data.package <- new("DataPackage",packageId=packageId)

addData(data.package,d1o.d1)

dataone-package 5

addData(data.package,d1o.d2)
addData(data.package,d1o.d3)
addData(data.package,d1o.md1)
insertRelationship(data.package, id.md1, c(id.d1, id.d2, id.d3))

create(d1.client, data.package)

You might have noticed that there is no mechanism to make the resourceMap itself a public object.
Currently, the DataPackage create method makes all of the resourceMaps it creates public (after
it creates the resourceMap.) This definitely needs to change.

5. dataFrame Interoperability: Once you have access to dataone content in R, it would be nice
to have that data in a useful R data structure, specifically the ubiquitous dataFrame. This pack-
age provides functions to serialize dataFrames (to .csv), and convert them back into dataFrames.
Serializing as csv makes the dataset almost universally useful for others.
A simple example:

serialize to csv
you can run this one!
library(dataone)
let’s load in a built-in dataset that’s a dataFrame
data(trees)
cli <- D1Client("SANDBOX")
serializedTreeData <- convert.csv(cli, trees)
dataFormatId <- "text/csv"

treeData <- new("D1Object","treesId",
serializedTreeData, dataFormatId, "urn:node:mnDemo5")

show the serialized form of the trees data
getData(treeData)

should display the original trees dataFrame
asDataFrame(treeData)

Some metadata contains information on how the data is serialized and stored, and can provide
useful information on how to deserialize the stored content correctly. The power of working with
data packages, instead of the individual object is revealed by this.
The dataone R client provides additional asDataFrame methods to allow the associated metadata
that contains content storage information to participate in deserialization.
examples:

df <- asDataFrame(data.package, dataMember1.id)

df <- asDataFrame(data.object, its.metadata)

table.describer <- EMLParser(its.metadata)
df <- asDataFrame(data.object, table.describer)

df <- asDataFrame(data.object, sep="\t", ...)

df <- asDataFrame(data.object)

In the first example the dataPackage uses the resource map to associate the data object with its
describing metadata, and send that along to the deserializer. The second example is useful where
there’s no data package to do the association, but it is known by some other means.

6 AbstractTableDescriber-class

Currently, the dataone package can only parse EML documents, but has the ability to plug in other
metadata format parsers as they become available, by way of the AbstractTableDescriber virtual
class.

Author(s)

Matthew Jones, Rob Nahf

Maintainer: Matthew Jones <jones@nceas.ucsb.edu>

AbstractTableDescriber-class

Class "AbstractTableDescriber"

Description

A virtual class (interface) that defines the methods used by the corresponding asDataFrame method
to get parsing instructions.

Classes that inherit from this class provide the format-specific ways to read the metadata.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

asDataFrame signature(x = "D1Object", reference = "AbstractTableDescriber"): ...

Generics

data.characterEncoding signature(x = "AbstractTableDescriber", index = "numeric"):
return the character encoding entry from the metadata

data.formatFamily signature(x = "AbstractTableDescriber", index = "numeric"): re-
turn the formatFamily of the data object being described. asDataFrame methods only work on
’text/simpleDelimited’

data.tableAttributeNames signature(x = "AbstractTableDescriber", index = "numeric"):
returns the attribute names defined in the metadata document for the specified data table

data.tableAttributeOrientation signature(x = "AbstractTableDescriber", index = "numeric"):
returns either "rows" or "columns", based on which way the attribute headers run. Most data
has a header row where the attribute names go across "columns", in which case, the return
value for this method should be "columns."

data.tableAttributeStorageTypes signature(x = "AbstractTableDescriber", index = "numeric"):
returns the attributes’ data storage types defined in the metadata document for the specified
data table

data.tableAttributeTypes signature(x = "AbstractTableDescriber", index = "numeric"):
returns the attributes’ data types defined in the metadata document for the specified data table

data.tableFieldDelimiter signature(x = "AbstractTableDescriber", index = "numeric"):
the field delimiter(s) of the data object being described

data.tableMissingValueCodes signature(x = "AbstractTableDescriber", index = "numeric"):
returns the missing value codes defined in the metadata document for the specified data table

CertificateManager-class 7

data.tableQuoteCharacter signature(x = "AbstractTableDescriber", index = "numeric"):
returns the quote characters(s) for the data object being described

documented.d1Identifiers signature(x = "AbstractTableDescriber"): return a vector of dataONE
identifiers associated with each table

documented.entityNames signature(x = "AbstractTableDescriber"): return a vector of en-
tity names associated with each table

documented.sizes signature(x = "AbstractTableDescriber"): return a vector of data table
sizes (in bytes)

Author(s)

Matthew Jones and Rob Nahf

Examples

showClass("AbstractTableDescriber")

CertificateManager-class

Class "CertificateManager"

Description

Certificate Manager organizes a set of methods to understand and, if necessary, manipulate the state
of your DataONE identity, as represented by your CILogon client certificate.

Understanding how your identity is managed is important for working with DataONE, especially
to avoid unexpected results. For example, depending your authorization status, searches may or
may return only public records, or the full set of public and private records. Object and package
retrievals might fail if some or all of the objects being retrieved are private. Creates and identifier
reservations might fail because your authorization certificate is missing or expired.

Details

DataONE identifies you using CILogon-provided x509 certificates. DataONE has partnered with
CILogon to provide a widely-accessible certificate issuing mechanism that allows DataONE users
to use existing trusted institutional and public accounts.

CILogon recognizes many identity providers, including many universities and also Google, so most
times users new to DataONE can get certificates using one of their existing accounts. For more
information about the CILogon service, see http://www.cilogon.org/faq

X509 Certificates differ from typical username-password login schemes in that certificates can be
used by more than one application, which is very useful when using more than one DataONE-
enabled application. The certificates CILogon issues for DataONE are so-called "short-lived" cer-
tificates that currently expire 18 hours from the time of issuing. Typically you will want to download
a fresh certificate the first time you interact with DataONE each day.

Objects from the Class

Objects can be created by calls of the form new("CertificateManager", ...) or CertificateManager()

http://www.cilogon.org/faq

8 CertificateManager-methods

Slots

jClientIdManager: Object of class "jclassName" ~~

Methods

downloadCert signature(x = "CertificateManager"): open the CILogin Certificate down-
load page in the default browser

getCertExpires signature(x = "CertificateManager"): Show the date and time when the
client certificate expires

isCertExpired signature(x = "CertificateManager"): Is the CILogon certificate expired?

obscureCert signature(x = "CertificateManager"): Provided mostly for troubleshooting,
this method renames the CILogon certificate, so that future connections to DataONE are
anonymous (as public). Note, when the client certificate is obscured, you will not be able
to create objects to DataONE, or build D1Objects, which uses the certificate to fill out fields
in the system metadata it creates.

restoreCert signature(x = "CertificateManager"): Restores a previously obscured certifi-
cate so that future interactions with the DataONE services are established using the certificate.

showClientSubject signature(x = "CertificateManager"): Returns the client subject (iden-
tity) according to DataONE, as as contained in the CILogon certificate. This is the same
value that CILogon displays when you download a certificate. If the certificate is expired, the
character string will be prefixed with "[EXPIRED]"

Author(s)

Matthew Jones and Rob Nahf

Examples

showClass("CertificateManager")

CertificateManager-methods

~~ Methods for Function CertificateManager in Package dataone
~~

Description

The CertificateManager provides methods for interacting with the client-side certificate. Building a
CertificateManager object is done with this method.

Methods

signature(... = "ANY") this method returns a CertificateManager object.

Author(s)

Matthew Jones and Rob Nahf

D1Client-class 9

D1Client-class Class "D1Client"

Description

A D1Client object represents the high-level interface to the DataONE system, and its methods
mediate most all interaction with the system.

Objects from the Class

Objects can be created by calls of the form new("D1Client", ...) or using one of the constructor
methods: D1Client

Slots

endpoint: Object of class "character" ~~

mn.nodeid: Object of class "character" ~~

client: Object of class "jobjRef" ~~

session: Object of class "jobjRef" ~~

Methods

convert.csv signature(x = "D1Client"): returns the dataframe serialized as a .csv

createD1Object signature(x = "D1Client", d1Object = "D1Object"): submits the objects
of the Data Package for creation in the DataONE System.

createDataPackage signature(x = "D1Client", dataPackage = "DataPackage"): Creates
the D1Objects contained in the DataPackage by calling the createD1Object() on each of the
members, as well as assembling the resourceMap object from the recorded relationships, and
calling create() on it as well. Any objects in the data map that have a dataUploaded value are
assumed to be pre-existing in the system, and skipped.

d1IdentifierSearch signature(x = "D1Client", solrQuery = "character"): query the DataONE
solr endpoint of the Coordinating Node, and return a character vector of identifiers. It expects
a fully encoded character string as input (with lucene-reserved characters backslash escaped
and url-reserved characters percent-encoded).

d1SolrQuery signature(x = "D1Client", solrQuery = "character"): query the DataONE
solr endpoint of the Coordinating Node. It expects a fully encoded character string as input
(with lucene-reserved characters backslash escaped and url-reserved characters %-encoded).

d1SolrQuery signature(x = "D1Client", solrQuery = "list"): query the DataONE solr
endpoint of the Coordinating Node. the solrQuery list expects named parameters correspond-
ing to SOLR url query constructs. Values of the list are expected to backslash escape any
lucene reserved characters.

encodeSolr signature(x = "D1Client", segment = "character"): treating all special char-
acters and spaces as literals, backslash escape special characters, and surround with double-
quotes if necessary

encodeUrlQuery signature(x = "D1Client", querySegment = "character"): Encodes the
characters of the input so they are not interpreted as reserved characters in url strings. Will
also encode non-ASCII unicode characters.

10 D1Client-class

encodeUrlQuery signature(x = "D1Client", pathSegment = "character"): Encodes the
characters of the input so they are not interpreted as reserved characters in url strings. Will
also encode non-ASCII unicode characters.

getCN signature(x = "D1Client"): ...

getD1Object signature(x = "D1Client"): retrieve an object as a D1Object from the DataONE
system by its identifier

getEndpoint signature(x = "D1Client"): Get the URI endpoint of the CN service which D1Client
is using. This value is determined from the env parameter

getMN signature(x = "D1Client", nodeid = "ANY"): ...

getMN signature(x = "D1Client", nodeid = "character"): ...

getMNodeId signature(x = "D1Client"): returns the identifier for the default Member Node

getPackage signature(x = "D1Client", identifier = "character"): retrieve a DataPack-
age from the DataONE system by its identifier, including all of it’s members.

listMemberNodes signature(x = "D1Client"): list the nodes registered to the DataONE envi-
ronment

reserveIdentifier signature(x = "D1Client", id = "character"): reserve an identifier on
DataONE in preparation for building and submitting a new object.

setMNodeId signature(x = "D1Client", id = "character"): sets the default Member Node,
to which future submissions will be directed. Note, D1Objects already built will be directed
at the previous Member Node when createD1Object is called, since their systemMetadata
specifies the old value.

Note

users should not provide the leading ’?’ to any query methods

The DataPackage describes the collection of data object and their associated metadata object, with
the relationships and members serialized into a document stored under, and retrievable with, the
packageId as it’s own distinct object.

Members are created serially, and most errors in creating one object will interrupt the create process
for the whole, resulting in some members will getting created, and the remainder not.

Author(s)

Matthew Jones and Rob Nahf

References

See d1_libclient_java documentation D1Client.create() "http://dev-testing.dataone.org:8080/
hudson/job/d1_libclient_java/ws/d1_libclient_java/target/site/apidocs/org/dataone/
client/D1Client.html#create"

Examples

showClass("D1Client")
Not run:

encodeSolr(client, "this & that")
fullyEncodedPath <- paste0("cn/v1/object/",encodeUrlPath("doi:10.6085/AA/YBHX00_XXXITBDXMMR01_20040720.50.5"))
fullyEncodedQuery <- paste0("q=id:",encodeUrlQuery(encodeSolr("doi:10.6085/AA/YBHX00_XXXITBDXMMR01_20040720.50.5")))

d1IdentifierSearch(client,"q=%2Bspecies%20population%20diversity")

"http://dev-testing.dataone.org:8080/hudson/job/d1_libclient_java/ws/d1_libclient_java/target/site/apidocs/org/dataone/client/D1Client.html#create"
"http://dev-testing.dataone.org:8080/hudson/job/d1_libclient_java/ws/d1_libclient_java/target/site/apidocs/org/dataone/client/D1Client.html#create"
"http://dev-testing.dataone.org:8080/hudson/job/d1_libclient_java/ws/d1_libclient_java/target/site/apidocs/org/dataone/client/D1Client.html#create"

D1Client-methods 11

d1SolrQuery(client,list(q="+species population diversity", fl="identifier"))
d1SolrQuery(client,"q=%2Bspecies%20population%20diversity%26fl=identifier")

End(Not run)

D1Client-methods ~~ Methods for Function D1Client in Package dataone ~~

Description

A D1Client object can be created in one of 3 ways, as described below. The user has a choice of
environments and member nodes within the chosen environment when building the D1Client object.

Valid choices for env are: ’PROD’ (the default), ’SANDBOX’,’STAGING’, ’STAGING2’ and
’DEV’

Methods

signature(env = "ANY", mnNodeid = "ANY") Creates a D1Client pointing to the production
DataONE environment. It does not set a member node.

signature(env = "character", mnNodeid = "ANY") Creates a D1Client pointing to the envi-
ronment specified, also without setting a default member node.

signature(env = "character", mnNodeid = "character") Creates a D1Client pointing to the
environment specified, and setting the default member node for all content submission.

D1Object-class Class "D1Object"

Description

This class encapsulates a DataONE object and it’s associated systemMetadata, and provides meth-
ods for building one for submission and methods for getting at its data and system metadata.

Objects from the Class

Objects can be created by calls of the form new("D1Object", id, data, format, mnNodeId).

Slots

jD1o: Object of class "jobjRef" ~~

12 D1Object-class

Methods

addData signature(x = "DataPackage", d1object = "D1Object"): Add the D1Object to
the DataPackage’s object store, usually in preparation for upcoming submission.

asDataFrame signature(x = "D1Object", reference = "AbstractTableDescriber"): re-
turn the D1Object’s content as a dataFrame, using parsing instructions from the specific Ab-
stractTableDescriber. see addition method implementation in DataPackage-class

asDataFrame signature(x = "D1Object", reference = "ANY"): return the D1Object’s con-
tent as a dataFrame

asDataFrame signature(x = "D1Object", reference = "D1Object"): return the D1Object’s
content as a dataFrame, using parsing instructions contained in the reference metadata D1Object.

canRead signature(x = "D1Object", subject = "character"): returns TRUE if the sub-
ject provided has read permission on the D1Object, based on the local copy of the D1Object’s
AccessPolicy

createD1Object signature(x = "D1Client", d1Object = "D1Object"): Creates a D1Object
on the MemberNode determined by the object’s systemMetadata.

EMLParser signature(d1Object = "D1Object"): Return an EMLParser object for the given
D1Object

getData signature(x = "D1Object", id = "ANY"): Returns the D1Object’s content

getFormatId signature(x = "D1Object"): Get the format Identifier of the D1Object

getIdentifier signature(x = "D1Object"): Get the Identifier for the D1Object

setPublicAccess signature(x = "D1Object"): Grant read permission to the public on this D1Object,
changing the system metadata locally. To be called before createD1Object(), otherwise it will
not have any real affect.

Note

As of Feb 2013, there is only one AbstractTableDescriber subclass for parsing metadata: EML-
Parser. It can handle EML version 2.0.0 - 2.1.1 formatted metadata files. Other parsers should
become available as separate packages that can be loaded as needed.

Author(s)

Matthew Jones and Rob Nahf

Examples

showClass("D1Object")

Not run:
asDataFrame
df <- asDataFrame(data.package, dataMember.id)

df <- asDataFrame(data.object, its.metadata)

table.describer <- EMLParser(its.metadata)
df <- asDataFrame(data.object, table.describer)

df <- asDataFrame(data.object, sep="\t", ...)

df <- asDataFrame(data.object)

DataPackage-class 13

End(Not run)

DataPackage-class Class "DataPackage"

Description

An object representing a data package in DataONE, which consists of a series of data objects,
the science metadata objects that documents them, and the resourceMap object that defines the
relationships.

Objects from the Class

Objects can be created by calls of the form new("DataPackage", packageId, jDataPackage).

Slots

packageId: Object of class "character" The identifier for the data package, that corresponds to
the DataONE identifier for the resourceMap object. If a new package is being built, this should
be a new identifier not already registered in DataONE.

jDataPackage: Object of class "jobjRef" A jJobRef to an instantiated java DataPackage object.
This parameter is typically only used when retrieving an existing package from the DataONE
system, as through the D1Client’s ’getPackage’ method.

Methods

addAndDownloadData signature(x = "DataPackage", identifier = "character"): down-
loads a pre-existing D1Object to the DataPackage, using the provided identifier string to re-
trieve from the DataONE system, and adds it to the local representation.

addData signature(x = "DataPackage", d1object = "D1Object"): Add the D1Object to
the DataPackage’s object store, usually in preparation for upcoming submission.

asDataFrame signature(x = "DataPackage", reference = "character"): return the con-
tent of the referenced DataPackage member as a dataFrame, using parsing instructions con-
tained in the object’s metadata. The metadata found via the DataPackage resource map.

contains signature(x = "DataPackage", identifier = "character"): Returns true if the
specified object is a member of the package

createDataPackage signature(x = "D1Client", dataPackage = "DataPackage"): ...
getData signature(x = "DataPackage", id = "character"): Returns the content of the Dat-

aPackage member identified by id. see additional implementation in link{D1Object-class}

getIdentifiers signature(x = "DataPackage"): Return the identifiers of the package members,
as defined by the ResourceMap

getMember signature(x = "DataPackage", identifier = "character"): Given the iden-
tifier of a member of the data package, return the D1Object representation of the member.

getSize signature(x = "DataPackage"): Get the count of D1Objects in the DataPackage
insertRelationship signature(x = "DataPackage", metadataID = "character", dataIDs = "character"):

associate data Objects to the science metadata objects that describe them. Note that since the
resource map that defines a package is separate from the items it associates, it is possible to use
identifiers that have not been defined as members of the package, though not recommended.

removeMember signature(x = "DataPackage", identifier = "character"): removes a D1Object
from the object map.

14 EMLParser-class

Note

A DataPackage object is a thin wrapper around the Java org.dataone.client.DataPackage class, ex-
posing most methods, and adapting their parameters to remove the need to provide java-specific
instances.

At least one method, "asDataFrame," is completely implemented within this package and has no
corresponding java method.

Author(s)

Matthew Jones and Rob Nahf

Examples

showClass("DataPackage")

Not run:
example of instantiating a new DataPackage
data_package <- new(Class="DataPackage",packageId="somePackageId")

example of instantiating an existing DataPackage, through the
fictional intermediate function foo()
jD1Package <- foo()
data_package <- new(Class="DataPackage", jDataPackage=jD1Package)

End(Not run)

EMLParser-class Class "EMLParser"

Description

Class that implements methods to provide parsing instructions for asDataFrame for EML metadata
documents v2.0.0 - v.2.1.1

Objects from the Class

Objects can be created by calls of the form new("EMLParser", ...).

Slots

d1Object: Object of class "D1Object" ~~

xmlDocRoot: Object of class "XMLNode" ~~

Extends

Class "AbstractTableDescriber", directly.

tableDescriber.registry 15

Methods

data.characterEncoding signature(x = "EMLParser", index = "numeric"): ...

data.formatFamily signature(x = "EMLParser", index = "numeric"): ...

data.tableAttributeNames signature(x = "EMLParser", index = "numeric"): ...

data.tableAttributeOrientation signature(x = "EMLParser", index = "numeric"): ...

data.tableAttributeStorageTypes signature(x = "EMLParser", index = "numeric"): ...

data.tableAttributeTypes signature(x = "EMLParser", index = "numeric"): ...

data.tableFieldDelimiter signature(x = "EMLParser", index = "numeric"): ...

data.tableMissingValueCodes signature(x = "EMLParser", index = "numeric"): ...

data.tableQuoteCharacter signature(x = "EMLParser", index = "numeric"): ...

documented.d1Identifiers signature(x = "EMLParser"): ...

documented.entityNames signature(x = "EMLParser"): ...

documented.sizes signature(x = "EMLParser"): ...

Author(s)

Matthew Jones and Rob Nahf

See Also

AbstractTableDescriber for method descriptions

Examples

showClass("EMLParser")

tableDescriber.registry

Registry of D1 formatIds where TableDescriber subclasses register the
metadata formats they can handle.

Description

Classes that inherit from TableDescriber should register themselves to this data structure when
loaded, so it may be used by the asDataFrame methods.

Format

The format is: List of 4 $ eml://ecoinformatics.org/eml-2.1.1: chr "EMLParser" $ eml://ecoinformatics.org/eml-
2.1.0: chr "EMLParser" $ eml://ecoinformatics.org/eml-2.0.1: chr "EMLParser" $ eml://ecoinformatics.org/eml-
2.0.0: chr "EMLParser"

Author(s)

Matthew Jones and Rob Nahf

Examples

data(tableDescriber.registry)

Index

∗Topic \textasciitilde\textasciitilde
other possible keyword(s)
\textasciitilde\textasciitilde

CertificateManager-methods, 8
D1Client-methods, 11

∗Topic classes
AbstractTableDescriber-class, 6
CertificateManager-class, 7
D1Client-class, 9
D1Object-class, 11
DataPackage-class, 13
EMLParser-class, 14

∗Topic dataone
tableDescriber.registry, 15

∗Topic datasets
tableDescriber.registry, 15

∗Topic methods
CertificateManager-methods, 8
D1Client-methods, 11

∗Topic package
dataone-package, 2

AbstractTableDescriber, 14, 15
AbstractTableDescriber-class, 6
addAndDownloadData (DataPackage-class),

13
addAndDownloadData,DataPackage,character-method

(DataPackage-class), 13
addData (DataPackage-class), 13
addData,DataPackage,D1Object-method

(DataPackage-class), 13
asDataFrame (D1Object-class), 11
asDataFrame,D1Object,AbstractTableDescriber-method

(D1Object-class), 11
asDataFrame,D1Object,ANY-method

(D1Object-class), 11
asDataFrame,D1Object,D1Object-method

(D1Object-class), 11
asDataFrame,DataPackage,character-method

(DataPackage-class), 13

canRead (D1Object-class), 11
canRead,D1Object,character-method

(D1Object-class), 11

CertificateManager
(CertificateManager-class), 7

CertificateManager,ANY-method
(CertificateManager-methods), 8

CertificateManager-class, 7
CertificateManager-methods, 8
contains (DataPackage-class), 13
contains,DataPackage,character-method

(DataPackage-class), 13
convert.csv (D1Client-class), 9
convert.csv,D1Client-method

(D1Client-class), 9
createD1Object (D1Client-class), 9
createD1Object,D1Client,D1Object-method

(D1Client-class), 9
createDataPackage (D1Client-class), 9
createDataPackage,D1Client,DataPackage-method

(D1Client-class), 9

D1Client, 9
D1Client (D1Client-class), 9
D1Client,ANY,ANY-method

(D1Client-methods), 11
D1Client,character,ANY-method

(D1Client-methods), 11
D1Client,character,character-method

(D1Client-methods), 11
D1Client-class, 9
D1Client-methods, 11
d1IdentifierSearch (D1Client-class), 9
d1IdentifierSearch,D1Client,character-method

(D1Client-class), 9
D1Object (D1Object-class), 11
D1Object-class, 11
d1SolrQuery (D1Client-class), 9
d1SolrQuery,D1Client,character-method

(D1Client-class), 9
d1SolrQuery,D1Client,list-method

(D1Client-class), 9
data.characterEncoding

(AbstractTableDescriber-class),
6

data.characterEncoding,EMLParser,numeric-method
(EMLParser-class), 14

16

INDEX 17

data.formatFamily
(AbstractTableDescriber-class),
6

data.formatFamily,EMLParser,numeric-method
(EMLParser-class), 14

data.tableAttributeNames
(AbstractTableDescriber-class),
6

data.tableAttributeNames,EMLParser,numeric-method
(EMLParser-class), 14

data.tableAttributeOrientation
(AbstractTableDescriber-class),
6

data.tableAttributeOrientation,EMLParser,numeric-method
(EMLParser-class), 14

data.tableAttributeStorageTypes
(AbstractTableDescriber-class),
6

data.tableAttributeStorageTypes,EMLParser,numeric-method
(EMLParser-class), 14

data.tableAttributeTypes
(AbstractTableDescriber-class),
6

data.tableAttributeTypes,EMLParser,numeric-method
(EMLParser-class), 14

data.tableFieldDelimiter
(AbstractTableDescriber-class),
6

data.tableFieldDelimiter,EMLParser,numeric-method
(EMLParser-class), 14

data.tableMissingValueCodes
(AbstractTableDescriber-class),
6

data.tableMissingValueCodes,EMLParser,numeric-method
(EMLParser-class), 14

data.tableQuoteCharacter
(AbstractTableDescriber-class),
6

data.tableQuoteCharacter,EMLParser,numeric-method
(EMLParser-class), 14

dataone (dataone-package), 2
dataone-package, 2
DataPackage (DataPackage-class), 13
DataPackage-class, 13
documented.d1FormatIds

(AbstractTableDescriber-class),
6

documented.d1Identifiers
(AbstractTableDescriber-class),
6

documented.d1Identifiers,EMLParser-method
(EMLParser-class), 14

documented.entityNames
(AbstractTableDescriber-class),
6

documented.entityNames,EMLParser-method
(EMLParser-class), 14

documented.sizes
(AbstractTableDescriber-class),
6

documented.sizes,EMLParser-method
(EMLParser-class), 14

downloadCert
(CertificateManager-class), 7

downloadCert,CertificateManager-method
(CertificateManager-class), 7

EMLParser (EMLParser-class), 14
EMLParser,D1Object-method

(D1Object-class), 11
EMLParser-class, 14
encodeSolr (D1Client-class), 9
encodeSolr,D1Client,character-method

(D1Client-class), 9
encodeUrlPath (D1Client-class), 9
encodeUrlPath,D1Client,character-method

(D1Client-class), 9
encodeUrlQuery (D1Client-class), 9
encodeUrlQuery,D1Client,character-method

(D1Client-class), 9

getCertExpires
(CertificateManager-class), 7

getCertExpires,CertificateManager-method
(CertificateManager-class), 7

getCN (D1Client-class), 9
getCN,D1Client-method (D1Client-class),

9
getD1Object (D1Client-class), 9
getD1Object,D1Client-method

(D1Client-class), 9
getData (DataPackage-class), 13
getData,D1Object,ANY-method

(D1Object-class), 11
getData,DataPackage,character-method

(DataPackage-class), 13
getEndpoint (D1Client-class), 9
getEndpoint,D1Client-method

(D1Client-class), 9
getFormatId (D1Object-class), 11
getFormatId,D1Object-method

(D1Object-class), 11
getIdentifier (D1Object-class), 11
getIdentifier,D1Object-method

(D1Object-class), 11

18 INDEX

getIdentifiers (DataPackage-class), 13
getIdentifiers,DataPackage-method

(DataPackage-class), 13
getMember (DataPackage-class), 13
getMember,DataPackage,character-method

(DataPackage-class), 13
getMN (D1Client-class), 9
getMN,D1Client,ANY-method

(D1Client-class), 9
getMN,D1Client,character-method

(D1Client-class), 9
getMNodeId (D1Client-class), 9
getMNodeId,D1Client-method

(D1Client-class), 9
getPackage (D1Client-class), 9
getPackage,D1Client,character-method

(D1Client-class), 9
getSize (DataPackage-class), 13
getSize,DataPackage-method

(DataPackage-class), 13

insertRelationship (DataPackage-class),
13

insertRelationship,DataPackage,character,character-method
(DataPackage-class), 13

isCertExpired
(CertificateManager-class), 7

isCertExpired,CertificateManager-method
(CertificateManager-class), 7

listMemberNodes (D1Client-class), 9
listMemberNodes,D1Client-method

(D1Client-class), 9

obscureCert (CertificateManager-class),
7

obscureCert,CertificateManager-method
(CertificateManager-class), 7

removeMember (DataPackage-class), 13
removeMember,DataPackage,character-method

(DataPackage-class), 13
reserveIdentifier (D1Client-class), 9
reserveIdentifier,D1Client,character-method

(D1Client-class), 9
restoreCert (CertificateManager-class),

7
restoreCert,CertificateManager-method

(CertificateManager-class), 7

setMNodeId (D1Client-class), 9
setMNodeId,D1Client,character-method

(D1Client-class), 9

setPublicAccess (D1Object-class), 11
setPublicAccess,D1Object-method

(D1Object-class), 11
showClientSubject

(CertificateManager-class), 7
showClientSubject,CertificateManager-method

(CertificateManager-class), 7

tableDescriber.registry, 15

	dataone-package
	AbstractTableDescriber-class
	CertificateManager-class
	CertificateManager-methods
	D1Client-class
	D1Client-methods
	D1Object-class
	DataPackage-class
	EMLParser-class
	tableDescriber.registry
	Index

